top of page

Smart Grids

The (complex) grid transformation

Smart grids have evolved since the 2000s adding more and more intelligence to the grid.  Today, many IT-based automated systems (and associated field devices) work together to manage and integrate the energy subsystems (generation, transmission, storage, and distribution).


Climate agenda has pushed the adoption of variable renewable energy (VRE) sources, which are (much) more complicated to be integrated into the power grid.  In this scenario, the grid must be able to handle variable, bidirectional energy flows between generation units and consumer's units, meaning that a new power grid must be built.


Solar plants, wind plants, and batteries: these are the building blocks of the power grid of tomorrow.  But these new grid elements depend on critical minerals (see Article #1).  Thus, energy advisors must consider some (key) variables (e.g., critical minerals availability & material processing capabilities) before proposing energy roadmaps.


IBRs, microgrids & grid defection


Additionally, the challenges of operating with high shares of inverter-based resources (IBRs) in grids with low system strength and low inertia (due to the decreasing presence of synch generators) should be highlighted.  At higher levels of IBR penetration, new advanced inverter controls, based on grid-forming (GFM) technologies, will be needed to maintain system stability.


In this grid-shifting context, microgrids has emerged as a viable alternative to conventional utility grids in providing reliable, secure, and sustainable power supply to a group of consumer units.  Flexible, they can also inject power into the grid, or even participating in VPPs (virtual power plants).


Concomitantly, driven by solar, wind, and battery systems price drops, and increasing climate change driven natural disasters, a relatively large number of consumers are thinking about disconnecting from the grid and investing in their own energy systems to achieve full energy autarky.


Grid-edge tech


Electricity system is moving away from the centralized paradigm to a decentralized and bidirectional one.  The grid edge (where “edge” means the proximity to end-use customers) comprises technologies, solutions, and business models enabling the transition toward a decentralized and distributed electric grid.  Grid  edge techs are important tools to facilitate higher penetrations of renewable energy and to mitigate climate change.


Grid edge, the interface between the grid and the distributed end users, encompasses a wide range of techs & services, from electric vehicles to heat pumps, and solar panels to home batteries.  Grid edge technologies enables energy autonomy, unlocks new economic opportunities or manages renewables & DER.  These technologies can also support resilience and allow power to be restored to communities more efficiently after natural disasters.

bottom of page